
Blockclique: Scaling Blockchains
through Transaction Sharding

in a Multithreaded Block Graph
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Abstract—Decentralized crypto-currencies based on the
blockchain architecture under-utilize available network band-
width, making them unable to scale to thousands of transactions
per second. We define the Blockclique architecture, that addresses
this limitation by sharding transactions in a block graph with
a fixed number of threads. The architecture allows the creation
of intrinsically compatible blocks in parallel, where each block
references one previous block of each thread. The consistency
of the Blockclique protocol is formally established in presence
of attackers. An experimental evaluation of the architecture’s
performance in large realistic networks demonstrates an efficient
use of available bandwidth and a throughput of thousands of
transactions per second.

I. INTRODUCTION

In a decentralized crypto-currency network, any node can
join the network, fetch from peers and verify the history
of executed transactions, create and broadcast new candidate
transactions, and execute sets of candidate transactions.

In order to achieve a global consensus on the history
of transactions, the protocol must regulate the execution of
transactions. Decentralized protocols perform a Sybil-resistant
selection of nodes that are allowed to execute transactions in
a timely manner. Proof-of-Work, used in Bitcoin [16] and
other protocols, selects random nodes to create blocks of
transactions depending on the nodes’ use of computational
power. Proof-of-Stake (e.g. in Tezos [8]) randomly selects
block producers based on the amount of coins they hold.

Even with a regulated selection of block producers, the
latency in peer-to-peer networks can cause different nodes to
produce or observe incompatible blocks, requiring protocol-
defined consensus rules to specify which blocks of transactions
should be preferred. In Bitcoin, the Nakamoto rule states
that the chain with the most work should be preferred and
built upon. However, if too many blocks are produced and
the network can’t broadcast them fast enough, the rate of
incompatible (stale) blocks can become too high and the
consensus can fail.

Blockchain protocols keep the stale rate low by limiting
block size and frequency, which also reduces network usage
and limits transaction throughput (5 tx/s in Bitcoin). The
median bandwidth of Bitcoin nodes is 56 Mb/s [7] but a single
8 Mb block is propagated every 600 s on average, leaving net-
work connections largely underused. As a result, the consensus
bitrate CB defined as the average bitrate of blocks assuming

they are full, is CB = 13 kb/s in Bitcoin. The consensus bitrate
is set by protocol parameters, but effective network properties
such as the number of nodes and their bandwidth and latency
make it possible or not to sustain that bitrate with a low
stale rate. Although Bitcoin’s consensus bitrate could be safely
increased by some margin, as illustrated by the Bitcoin Cash
increased block size, the thousand-fold difference between the
consensus bitrate and the actual bandwidth of peers underlines
the inefficiency of relying on a single chain [5].

This paper introduces the Blockclique architecture, a natural
extension of blockchains which optimizes network usage by
parallelizing block creation into T threads. Blockclique uses
transaction sharding to ensure that the transactions contained
in blocks created in parallel are always compatible: a block b
in a thread τ can only include transactions with input addresses
assigned to the thread τ , while transaction outputs can belong
to any thread. Simply using T separate blockchains would
however split network resources and degrade the security of
the protocol by a factor T compared to a single blockchain.
Therefore, we do not shard the network of nodes, so that
all nodes produce and verify blocks in all threads. Different
threads are synchronized by linking their blocks together in
a directed acyclic graph structure (DAG) where each block
acknowledges one parent block in each thread by including
its hash. Contrary to network sharding solutions, all nodes
process all blocks of all threads so that there is no need for
cross-shard communication other than the cross-thread parent
links in the graph.

After defining the blockclique data structure, we establish
a Blockclique-specific consensus mechanism derived from
the Nakamoto consensus rule. We then study the security
of the protocol, formally prove its consistency, and derive
optimal parameters for security and performance. In our
network simulations, the Blockclique architecture exceeds
10, 000 transactions per second with a transaction time of less
than a minute, in a large network with realistic properties.
Overall, our results show that it is not necessary to adopt
radically different blockchain protocols to obtain a scaled and
decentralized currency, and that a natural parallelization of
blockchains makes an efficient use of peer-to-peer networks.
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TABLE I
COMPARISON OF DECENTRALIZED CRYPTO-CURRENCY PROTOCOLS.

Protocol
Data

Structure Sharding
Sybil

Resistance
Consensus

Family Security a Throughput b

Bitcoin [16] Block tree No Proof-of-Work Nakamoto 50% 7 tx/s
SPECTRE [20] Block DAG No Proof-of-Work Nakamoto 50% Not Avail. c

Conflux [14] Block DAG No Proof-of-Work Nakamoto 50% 6400 tx/s c

OHIE [24] Parallel Trees No Proof-of-Work Nakamoto 50% 2420 tx/s c

Avalanche [18] Tx DAG No Any Metastability 20% 3400 tx/s
Elastico [15] Block tree Network+Tx Proof-of-Work Byzantine 25% 16 bx / 110s

Omniledger [12] Block DAG Network+UTXO Any Byzantine 25% 500 tx/s
Blockclique (ours) Multithread. DAG Transaction Any Nakamoto 45% 10000 tx/s
a Maximum resource proportion of attackers under which the protocol is secure. Threat models may differ.
b Assumptions on the number of nodes in the network and their bandwidth may differ.
c Non-unique transactions. Transactions can appear multiple times in the structure, reducing the effective throughput.

II. RELATED WORK

Previous attempts at scaling decentralized blockchains
through sharding and/or changes in data structure are espe-
cially relevant to our work, and are summarized in Table I.

1) Changes in Data Structure: One line of work seeks
to scale blockchains by extending the classical block tree
structure to a structure allowing a parallel production of blocks
and transactions. The first directed acyclic block graph (block
DAG) structures appear in [13], [21], [20]. In SPECTRE [20],
nodes create blocks in parallel in a block DAG, and a voting
process sorts transactions and chooses which ones are exe-
cuted. Similarly, the Conflux [14] and OHIE [24] protocols
allow the creation of parallel blocks in a DAG or a set of
parallel chains. However, as those different protocols do not
implement transaction sharding, the parallel blocks can contain
the same transactions many times which can drastically reduce
the effective transaction throughput.

In IOTA [17], transactions are included in a transaction
DAG. To emit a new transaction, a node attaches it to two
tip transactions of its local DAG, solves a small Proof-of-
Work puzzle and broadcasts the transaction. A coordinator run
by the IOTA foundation provides checkpoints every minute
so that nodes consistently verify transactions, and so that the
DAG does not grow excessively in width. Avalanche [18] uses
a data structure similar to IOTA. Users are free to choose
which transactions they want to reference, and therefore need
to be incentivized to help build a DAG with limited width.
Blockclique also uses a DAG structure, but restricts it to a
fixed number of threads, allowing the DAG to grow only in one
direction. This greatly simplifies the protocol and its analysis,
and removes the need for central entities [17] or incentives for
users to grow the DAG in a single direction [18].

2) Sharding: Sharding consists in distributing nodes and/or
transactions into several groups (“shards”) for parallel pro-
cessing. Most existing sharding protocols rely on network
sharding: nodes are divided into groups, each processing a
given subset of the data [15], [12], [25]. A “directory” group
is then responsible for aggregating blocks coming from all
shards into a single blockchain. Group members are typically

selected using a PoW puzzle. For resilience against attackers
with a large fraction of the computational power, each group
must contain a large number of members. However, consensus
within a group is typically achieved using classical Byzantine
Fault Tolerant protocols, which do not scale well [2], [3]
and cause the transaction throughput to decrease with group
size. As a result, such schemes face a security-performance
dilemma.

Blockclique shards transactions in order to parallelize block
creation, and does not rely on network sharding. As a result, it
is closer to traditional blockchain protocols: each participant is
randomly selected to create blocks in all threads, and verifies
blocks of all threads. A consensus rule applied by all nodes
determines in all threads which blocks should be considered
confirmed.

To our knowledge, Blockclique is the first protocol to
combine a parallel block structure to improve transaction
throughput with transaction sharding to avoid the duplication
of transactions.

Lastly, it is possible to improve the efficiency of blockchain
applications using off-chain peer-to-peer payment chan-
nels [6], in which payment promises guaranteed by on-chain
deposits are processed between pairs of nodes. Off-chain
promises are only settled on the blockchain periodically, or
in case of fraud, which allows high transaction throughput
and reduced transaction fees. However such networks are
still experimental, do not handle large transactions and suffer
from payment hub centralization [19]. This paper does not
focus on off-chain overlays, but Blockclique could be used as
a high-throughput basis for off-chain payment, offering fast
settlement and quick payment channel reconfiguration.

III. ARCHITECTURE

The Blockclique architecture is a combination of a data
structure for the ledger, block and transaction structures, a
Sybil-resistant selection of nodes, an incentive model and a
consensus rule. Those elements are described in the following
sections.
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Fig. 1. Data structure. (a) Example timeline of a multithreaded block DAG, with T = 4 threads and one block slot every t0 seconds in each thread. Dark
arrows link parent blocks to their children. The producer of block b2h5

did not observe block b3h2
yet but was still able to create a compatible block that

references the earlier b30 block instead. No block was broadcast for block slot s11: it is a case of block miss. (b) General structure of a non-genesis block bτh
in the block slot sτi of thread τ .

A. Data Structure

1) Threads and block slots: We define T threads numbered
from τ = 0 to τ = T−1, each containing consecutive regularly
spaced (by t0 seconds) time slots that can host blocks. Fig. 1(a)
shows an example timeline with T = 4 threads. The i-th block
slot (i ∈ Z+) in thread τ is denoted by sτi and occurs at i ·t0 +
τt0/T seconds. The τt0/T time shift ensures that globally all
block slots, and therefore network usage, are uniformly spread
in time.

2) Multithreaded Block DAG structure: Blocks are identi-
fied by their cryptographic hash: bτh refers to the block with
hash h in thread τ . We define one genesis block with no
parents, denoted bτ0 , in the first block slot of each thread. Each
non-genesis block references the hashes of T parent blocks,
one from each thread. We define the parent function P (bτ2h2

, τ1)
that returns the parent in thread τ1 of a non-genesis block bτ2h2

.
The parent function generates a block graph G where an arrow
from bτ1h1

to bτ2h2
means P (bτ2h2

, τ1) = bτ1h1
. As a child block

includes its parent’s hashes, and the hashing procedure of the
child block takes into account those hashes, it is impossible in
practice to build a cycle in the graph G, unless the security of
the hashing function is compromised. G is therefore a directed
acyclic graph of parallel blocks (block DAG).

Definition 1. Let (T, t0,SB)-Multithreaded block DAG denote
a block DAG structure with all the following properties:
• one genesis block is present in each of T threads,
• non-genesis blocks in thread τ reference one block of

each thread as parents, have a size lower than SB bits,
and a block slot number strictly higher than their parent’s
in thread τ ,

• to ensure the consistency of block references, any ances-
tor bτ1h1

of a block bτ2h2
must be P (bτ2h2

, τ1) or one of its
ancestors.

Blockclique uses an (T, t0,SB)-Multithreaded block DAG
as its data structure (see Fig. 1(a) for an example).

3) Ledger: In a high throughput architecture, the trans-
action history grows quickly, requiring nodes to be able to
forget old blocks to save space. In Blockclique, nodes store
the balance of each address in a local ledger, so that they can
verify whether the sender address of a transaction has enough
coins, without looking up old transactions.

Definition 2. Let A be the set of addresses and B the set
of possible balances of an address. Given a multithreaded
block DAG G, a ledger state L(G, bτh) is a mapping from
addresses to their balances after the processing of block bτh
and its ancestors in G: L(G, bτh) : A → B.

4) Blocks and Transactions: The typical structure of a non-
genesis block is shown in Fig. 1(b).

Blocks can contain transactions emitted by any node, up to
a total block size limit of SB bits. A transaction represents
a modification of the crypto-currency’s ledger state, moving
coins from one address to another.

Nodes are randomly selected to create blocks in particu-
lar block slots. Furthermore, before each block slot sτi , E
randomly selected nodes are allowed to broadcast signed
endorsements [1] carrying the hash of the last block in thread
τ , and those endorsements can be included in any of the E
endorsement slots within the block at slot sτi by its creator.

5) Transaction Sharding: In the Blockclique protocol,
transactions are sharded: they are deterministically divided into
groups to be processed in parallel threads. For instance, if there
are T = 32 threads, the first 5 bits of an address define the
thread in which transactions originating from this address can
be included.

Definition 3. Given the sets of possible addresses A and
transactions T , a sharding function S uniformly assigns any
address a ∈ A to a particular thread S(a) = τ ∈ [0, T − 1],
and any transaction tx ∈ T to the thread assigned to the
transaction’s emitter address. The transaction tx can only be
included in a block of thread S(tx), and can only reduce the



balance of addresses assigned to this thread.

Transaction sharding ensures that transactions in a block are
compatible with transactions in blocks from other threads as
they can’t spend the same coins. We stress that this restriction
only applies to spending, and transactions can send coins
towards any address, regardless of the thread it is assigned
to. Transactions in a thread are regularly taken into account in
blocks of other threads through parent links, so that no further
cross-shard communication is required.

B. Sybil-Resistant Selection

In a decentralized network, nodes can join and contribute
without permission. To control the rate of execution of transac-
tions, nodes are regularly selected by the protocol to produce
blocks of transactions with a limited size. To prevent malicious
actors from spawning an arbitrary large number of nodes
(which is called a Sybil attack), and create too many blocks,
the selection mechanism needs to rely on a proof of own-
ership of a resource. The two main Sybil-resistant selection
mechanisms used in current blockchains are Proof-of-Work
and Proof-of-Stake. Proof-of-Work [16] selects random nodes
depending on their use of computational power, while Proof-
of-Stake [8] selects them based on the amount of coins they
hold.

The Blockclique protocol can use any Sybil-resistant selec-
tion mechanism that explicitly selects a node to create each
block and endorsement. A node must know in advance, but not
be able to choose in which threads it should produce its next
blocks and endorsements. For security reasons (see Sec. IV-F),
the selection mechanism must take into account the resources
of nodes with some time delay K, called the resource snapshot
delay.

Definition 4. Let N be the set of nodes in the peer-to-peer
network. A K-Sybil-resistant selection is a random oracle
S : [0, 1]∗ → N , accessible to all nodes, with a non-uniform
non-stationary output distribution on N . Its distribution in two
incompatible cliques must stay the same for at least K seconds
after the first incompatible block between those cliques.

The oracle models a random selection of nodes, which takes
as input a string of bytes identifying a particular block slot or
endorsement slot, and deterministically selects a node allowed
to produce this block or endorsement. All nodes consult this
oracle to check when they are selected for a given slot or
endorsement, and to verify that other nodes where allowed
to create a given block or endorsement. If no valid block is
produced for a given block slot, the block slot remains empty,
which corresponds to a block miss (see slot s1

1 in Fig. 1(a)).
Similarly, if no valid endorsement is produced for a given
endorsement slot, the endorsement slot remains empty.

A Proof-of-Work mechanism like the one of Bitcoin is
not directly adaptable to the Blockclique architecture. Indeed,
nodes could decide in which thread they produce blocks, or
that thread could be chosen from the block hash as in the (non-
sharded) OHIE protocol [24], in which case nodes do not know

in advance which (sharded) transactions to include. However, a
Proof-of-Work mechanism could be used to generate identities,
as in ELASTICO [15], and those identities could then be
randomly selected to produce blocks and endorsements.

Proof-of-Stake mechanisms like Tezos [1] are readily trans-
ferable to the Blockclique protocol. Nodes that register to
be stakers are randomly selected to produce blocks, with a
probability proportional to their balance. In the Tezos protocol,
the stake snapshot delay K is set to approximately 3 weeks.
Moreover, a seed is computed in each cycle from bytes
included in blocks by their producers, and is used to select
pseudo-randomly the producers of a later cycle. Various im-
plementations of random generator seeding can be considered
[23], [4].

In Blockclique, each block has a scalar fitness value, which
measures the fraction of resources required for the creation of
the block through Sybil-resistant selection. The fitness f(b) of
a block b is defined as the total number of selected addresses
that successfully participated in the creation of the block:

f (b) = 1 + e (1)

The scalar 1 acknowledges successful block creation and
inclusion, and e is the number of endorsements successfully
produced and included among the E endorsement slots of
block b. This fitness value is used by the consensus rule to
determine the set of executed transactions (see Sec. III-D).

C. Incentives: Rewards and Penalties

In order to motivate nodes to participate in the consensus
with the behavior specified by the protocol, an incentive model
provides rewards for appropriate behavior and penalties for
deviations from the protocol.

Definition 5. Given the set of addresses A, a multithreaded
block DAG G and a block bτh, an Incentive model I(G, bτh) is
a function assigning a reward and penalty to the addresses of
all nodes: I(G, bτh) : A → R2

≥0.

We assume that the creation of blocks is rewarded by
newly created coins. The block reward also contains a constant
amount per included endorsement, shared between the block
producer, the endorser, and the producer of the endorsed
block, which motivates block creation as well as endorsement
creation and inclusion. The inclusion of transactions in blocks
is rewarded by the fees from all included transactions.

In order to prevent block producers from creating or endors-
ing multiple incompatible blocks in the same slot, we assume
that the incentive model gives penalties to addresses involved
in this misbehavior. For instance, in Tezos those penalties are
implemented by requiring block and endorsement producers
to deposit an amount of coins that they can’t withdraw for a
given time [1]. Any node can produce a denunciation trans-
action containing the proof that a same address has produced
or endorsed incompatible blocks at the same block slot. A
denunciation included in a block causes a coin penalty to the
offender, taken from its deposit, half of which is destroyed,
and half of which is transferred to the block creator.
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Fig. 2. From Multithreaded block DAG to compatibility graph. (a) Blocks b0h0
and b0h2

from thread 0 reference the same parent in thread 0: they are
thread-incompatible. (b) Block b0h2

references the grand-parent of block b1h3
in thread 1 and block b1h3

references the grand-parent of block b0h2
in thread 0:

the two blocks are grandpa-incompatible. In both cases there are two maximal cliques of compatible blocks (red and green filled areas).

In the context of the Blockclique architecture, transaction
sharding requires that the offender address belongs to the same
thread as the block in which the denunciation is included,
because the offender is “spending” the penalty.

D. Consensus Rule

When a node receives a block from its peers, it checks
that the block is valid, and uses a consensus rule to decide
which valid blocks should be taken into account. The intuitions
behind the blockclique consensus rule are the following: on the
one hand, each thread behaves like a standard blockchain so
that two blocks in the same thread can’t share the same parent
in that thread (thread incompatibility), and on the other hand,
rather than acting as if threads were independent, nodes should
take into account blocks found in other threads (grandpa
incompatibility).

1) Compatibility Graph: Let the predicate
Pathτ (G, bτh1

, bτh2
) be true if there is a directed path

in the multithreaded block graph G going from bτh1
to bτh2

through blocks of thread τ only, or if bτh1
= bτh2

. This
predicate indicates whether or not bτh1

is an ancestor in τ of
(or is equal to) bτh2

.
We define the thread incompatibility graph GTI as the graph

with one node per valid block, and an undirected edge between
two blocks bτ1h1

and bτ2h2
only if the two blocks are non-genesis

blocks in the same thread and have the same parent in their
thread:

GTI(b
τ1
h1
, bτ2h2

) :=
[
bτ1h1
6= bτ10

]
and

[
bτ2h2
6= bτ20

]
and[

τ1 = τ2
]
and

[
P (bτ1h1

, τ1) = P (bτ2h2
, τ2)

]
(2)

Fig. 2(a) shows an example of a thread incompatibility be-
tween two blocks.

We define the grandpa incompatibility graph GGPI as the
graph with one node per valid block, and an undirected edge
between two blocks bτ1h1

and bτ2h2
if the parent of block bτ2h2

in
thread τ1 is not the parent of bτ1h1

nor one of its descendants in

τ1, and the parent of block bτ1h1
in thread τ2 is not the parent

of bτ2h2
nor one of its descendants in τ2:

GGPI(b
τ1
h1
, bτ2h2

) :=
[
bτ1h1
6= bτ10

]
and

[
bτ2h2
6= bτ20

]
and

[
not Pathτ1(G,P (bτ1h1

, τ1), P (bτ2h2
, τ1))

]
and

[
not Pathτ2(G,P (bτ2h2

, τ2), P (bτ1h1
, τ2))

]
(3)

Grandpa incompatibility is a topological way of expressing
that a block bτh in thread τ should not be included if it
does not take into account blocks that were found in other
threads before the time when P (bτh, τ) was found, but without
checking block timestamps that can be inaccurate or manipu-
lated. Fig. 2(c) shows an example of grandpa incompatibility
between two blocks.

Using thread and grandpa incompatibility graphs GTI and
GGPI , we define the compatibility graph GC as the graph with
one node per valid block, and an undirected edge between two
blocks bτ1h1

and bτ2h2
if the two blocks are not thread nor grandpa

incompatible, and bτ1h1
is compatible with the parents of bτ2h2

,
and bτ2h2

is compatible with the parents of bτ1h1
:

GC(bτ1h1
, bτ2h2

) :=[
not GTI(b

τ1
h1
, bτ2h2

)
]
and

[
not GGPI(b

τ1
h1
, bτ2h2

)
]

and
[[
bτ2h2

= bτ20

]
or
[
GC(bτ1h1

, P (bτ2h2
, τ)) for all τ

]]
and

[[
bτ1h1

= bτ10

]
or
[
GC(P (bτ1h1

, τ), bτ2h2
) for all τ

]]
(4)

GC therefore links mutually compatible blocks, and blocks
that reference mutually incompatible parents are discarded.
Figs. 2(b, d) show the GC graphs corresponding to the
incompatibilities illustrated in Figs. 2(a, c).

The definition of GC is recursive: GC is built incrementally
following a topological order of G, by processing a block as
soon as all its parents have been received and processed.

2) Best Clique of Compatible Blocks: Let cliques(GC)
be the set of maximal cliques of compatible blocks: the set of
subsets C of GC so that every two distinct blocks of C are
adjacent in GC and the addition of any other block from GC
to C breaks this property. In the remainder of the paper, the
term “clique” refers to a maximal clique of compatible blocks.



The blockclique consensus rule states that the best clique,
that nodes should extend, is called the blockclique and is the
clique of compatible blocks of maximum total block fitness:

blockclique(G) := arg max
C ∈ cliques(GC)

[ ∑
b∈C

f(b)

]
(5)

If two cliques have the same total fitness, the clique with the
smallest arbitrary-precision sum of the hashes of the blocks it
contains is preferred.

3) Incremental Compatibility Graph and Finality: As find-
ing the maximal cliques of a graph is NP-hard [10], the
blockclique of the whole compatibility graph GC cannot be
efficiently computed once GC contains more than a few
hundred blocks. Thus, an incremental rule for recomputing
cliques using only the most recent blocks is required. We
define Ghead

C as a minimal version of GC from which blocks
that are considered final (forever part of the blockclique) or
stale (forever incompatible with the blockclique) have been
removed. Ghead

C is kept in memory and updated incrementally.
A block bτh is considered stale if it is included only in cliques

of Ghead
C that have a total fitness lower than the fitness of the

blockclique minus a constant ∆0
f . Any new block referring to

stale parents is considered stale. A block bτh is considered final
if it is included in all maximal cliques of Ghead

C and included
in at least one clique where the descendants of bτh cumulate a
total fitness greater than ∆0

f .
We define the threshold fitness difference ∆0

f = F (E + 1),
where E the number of endorsement slots per block, and F is a
finality parameter that can be seen as the number of blocks by
which an alternative clique can be shorter than the blockclique
before its blocks may be discarded as stale.

Definition 6. Given a current incremental compatibility graph
Ghead
C and a new block bτh, a (F,E)-Nakamoto consensus rule

outputs a set of final and stale blocks to be removed from
Ghead
C , and the blockclique to be considered.

IV. SECURITY

A. Threat Model

We consider a network composed of honest and Byzantine
nodes. Honest nodes follow the Blockclique protocol, while
Byzantine (“attacker”) nodes seek to disturb its functioning
for their benefit or even at their own cost. Byzantine nodes
hold a proportion β of the total resource, and honest nodes own
1−β. Furthermore, we generalize the behavior of honest nodes
by assuming that they may not be perfect: they miss block
creation and endorsement opportunities with a probability µ.
We define γ = (1 − β)(1 − µ) as the proportion of the total
resource that is in active use by honest nodes. Attackers are
assumed to be able to delay the propagation of messages
between honest nodes by a maximum time of δ seconds,
so that a block or endorsement created by a honest node is
broadcast to all other honest nodes before the delay δ.

B. Attack Surface

Attackers are fully coordinated and always behave in the
optimal way to perform a given attack. They can choose to
honor or miss block creation and endorsement opportunities in
the blockclique and/or any alternative cliques meant to attack
the blockclique. When creating a block, they choose which
transactions and endorsements to include (if any).

In Blockclique, as in blockchains with a Nakamoto consen-
sus, consensus emerges through block creation. In Bitcoin,
blocks are never definitely confirmed and the confirmation
status of a block increases with the number of blocks that
are appended to it. In Blockclique however, the status of
a block is eventually settled: it either becomes part of the
history (final) or is discarded (stale). Transactions in final
blocks are considered as perpetually executed by honest actors,
while transactions only within a stale block are discarded. The
boundary between settled and unsettled blocks is controlled by
the finality parameter F .

In blockchains, attackers can try to re-organize the
blockchain by extending an alternative branch of the block
tree, for instance to attempt a double-spend. In Blockclique,
the introduction of the finality parameter modifies the mech-
anisms and the consequences of such attacks. Attackers can
branch off the current blockclique and extend an alternative
clique from three possible levels.

Attackers can branch off a recent block that is universally
seen as unsettled. If they succeed in extending the alternative
clique and overtaking the fitness of the blockclique, honest
nodes switch to the alternative clique. However, this does not
change the finality status of any block according to any honest
node, and therefore has no consequences on the finality of
transactions.

Alternatively, attackers can branch off a block that is settled
according to some but not all honest nodes due to network
delays. If they succeed in overtaking the blockclique, this can
lead to a network fork. We call this a finality fork attack, and
study it in Sec. IV-D.

Finally, attackers can also branch off an old block, known
by all honest nodes under the same status, final or stale. If
they succeed in overtaking the blockclique, honest nodes are
not affected as they consider all the descendants of the block
as stale. However, new nodes joining the network and simply
choosing the clique of highest fitness are vulnerable. We study
this attack on newcomers in Sec. IV-F.

C. A Markov Chain Model of Alternative Cliques

In this section, we model the short-term evolution of the
fitness of alternative cliques. We consider a honest reference
node receiving blocks (not necessarily in their order of cre-
ation), and we model the fitness difference ∆f between the
clique extended by an attacker and the blockclique extended by
honest nodes through a Markov chain of state ∆f , as observed
and processed by the reference node. Fig. 3 shows the Markov
chain model representing the fitness difference ∆f .
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Fig. 3. Markov chain representing the fitness difference ∆f between an alternative attack clique and the blockclique.

We assume that the attack occurs within the resource
snapshot delay K, so that resources and random selection
results are the same in both cliques.

We also assume that the attacker arbitrarily delays the
transmission of messages (blocks and endorsements) up to
a time delay δ < t0

2 . With this assumption, honest nodes
always receive a created block bτh before a delay t0

2 , then
create and broadcast endorsements of bτh, so that the next block
producer in thread τ receives the block and its endorsements
before the time t0 when it is supposed to create and broadcast
the next block. Honest nodes thus never create incompatible
blocks. Also, in case the Sybil-resistant mechanism modifies
the selection probabilities during the attack, we conservatively
consider β to be the maximum proportion of resources the
attacker reaches during the attack.

The model considers the worst-case scenario in which
the attacker never misses block creation nor endorsement
opportunities in the attack clique and always misses in the
blockclique, while honest nodes miss in the blockclique with
a probability µ and always miss in the attack clique.

If the fitness difference ∆f reaches −F (E+1), where F is
the finality parameter and E the number of endorsement slots
per block, the attack fails. On the contrary, if ∆f reaches
0, the attack clique overtakes the blockclique and the attack
succeeds. The states −F (E + 1) and 0 are therefore the two
absorbing states of the Markov chain, which constrains states
within −F (E + 1) ≤ ∆f ≤ 0.

When the honest node receives a block created by the
attacker, ∆f transitions forward to ∆f+n, with 1 ≤ n ≤ E+1
depending on the number of endorsements the attacker was
selected to create for the previous block. If ∆f + n ≥ 0, the
Markov chain enters and remains in the attack success state
∆f = 0. The probability P+n of such a n-point forward jump
is the probability that the attacker is selected for the creation
of one block and for n− 1 endorsements in that block out of
E slots (independent draws of a binomial law):

P+n = β

(
E

n− 1

)
βn−1(1− β)E−(n−1) (6)

Similarly, when the honest node receives a block created by
a honest node, ∆f transitions backwards to ∆f − n with 1 ≤
n ≤ E+1. If ∆f −n ≤ −F (E+1), the Markov chain enters
and remains in the attack failure state ∆f = −F (E+ 1). The
probability P−n of a n-point backward jump is the probability
that a honest node is selected for the creation of one block and

does not miss it and that despite endorsement misses, honest
nodes produce exactly n− 1 endorsements out of E:

P−n = γ

(
E

n− 1

)
γn−1(1− γ)E−(n−1) (7)

If a selected honest node misses block creation, the state
of the Markov chain does not change, which happens with
probability P0 = (1− β)µ.

From P+n, P−n and P0, we deduce the matrix of transition
probabilities from any state to any other. Standard techniques
for absorbing Markov chains [9] provide ways to numerically
compute the probability that the attack clique eventually
overtakes the blockclique depending on the initial state.

D. Attacking Block Finality Consensus

Decentralized currencies require strong guarantees that
transactions labeled as final are perpetual and may not be
canceled in the future. However, due to network propagation
delays, consensus on whether a block is settled is not reached
instantly. For a short time, some nodes may have settled a
block as stale or final, while others haven’t yet. Powerful
attackers can coordinate to timely extend an alternative clique
from a block incompatible with this one. If the fitness of
the attack clique overcomes the current blockclique, part of
the honest nodes switch to the attack clique as their new
blockclique while others only keep the initial blockclique
and reject the attack clique as stale, resulting in a permanent
network fork.

We consider two cliques: the current blockclique being
attacked, and an alternative attack clique incompatible with
the current blockclique being extended by the attackers. In
the current blockclique, honest nodes produce blocks and
endorsements with a miss probability µ, while attackers miss
all block creations and endorsements to slow down the increase
of the fitness of the current blockclique. In the attack clique,
honest nodes are not present and miss all their block creation
and endorsement opportunities, while attackers never miss
block creation and endorsements to maximize the fitness
increase of the attack clique.

In order to evaluate the success probability of a finality
fork attack, we use the Markov chain of Sec. IV-C modeling
the evolution of the fitness difference ∆f between the attack
clique and the current blockclique at every new slot. The attack
starts when the attack clique is on the verge of reaching the
finality threshold (∆f = −(F − 1)(E + 1)), fails if it does
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Fig. 4. Probabilities of finality fork attack success as functions of the proportion of staking power β held by attackers, depending on F and E.

(reaching absorbing state ∆f = −F (E + 1)), and succeeds
if its fitness catches up with the current blockclique (reaches
absorbing state ∆f = 0). The following Lemma shows that
in the case E = 0 the success probability of a finality fork
attack drops exponentially in F .

Lemma 1 (Success of a finality fork attack). Assuming β < γ,
δ < t0

2 and E = 0, the probability p of a finality fork attack
success is

p =

γ
β − 1(
γ
β

)F
− 1

∼
F→∞

(
γ

β
− 1

)(
β

γ

)F
Proof. The finality fork attack is successful if the attack clique,
starting with a fitness difference ∆f = −F + 1, reaches a
fitness difference of 0. This problem is analogous to the two
barrier ruin problem for Bernoulli random walks. A standard
result for random walks with drift (see [22], p. 297) shows
that, starting from state ∆f , the probability of reaching the
absorbing state ∆f = 0 is given by

p(∆f ) = 1−

(
γ
β

)F
−
(
γ
β

)F−∆f

(
γ
β

)F
− 1

(8)

A finality fork attack starts at ∆f = −F + 1, in which case

p(−F + 1) = 1−

(
γ
β

)F
− γ

β(
γ
β

)F
− 1

=

γ
β − 1(
γ
β

)F
− 1

(9)

The case E > 0 is more involved to analyze formally but a
numerical computation (see Sec. IV-C) shows that increasing
E improves the security of the protocol against the finality fork
attack. Figure 4 shows example values of the attack success
probability computed for different β, F and E. For instance,
with F = 64, E = 0, µ = 1% and β = 45%, the success
probability of a finality fork attack is about 10−6, while with
E = 8, it becomes about 10−16.

For the Markov chain hypotheses to hold, the resource
snapshot delay K must be longer than the possible duration

of an attack. The following Lemma show that the probability
that the duration of an attack last more than n slots decrease
exponentially with n. It follows that it is possible to chose
K such that the Markov chain hypotheses hold except with
probability as small as desired. The attack duration and its
standard deviation increase with β. Numerical results show
that for β = 0.5, F = 64 and E = 8 attacks reach an average
duration of 410 slots (s.d. of σ = 598 slots).

Lemma 2 (Duration of a finality fork attack). The probability
that a finality fork attack lasts more than n slots decreases
exponentially with n.

Proof. Let ta be the duration of the attack (either successful
or not). Let pt = P (ta > t) be the probability that the attack
has not finished after a duration t. It suffices to find an upper
bound on the probability that the attack has not stopped after
n = t × T/t0 slots. One way for the attack to terminate is
when a sequence of n slots contains a subsequence of length
F (E + 1) containing only forward jumps or only backward
jumps. Such subsequences happen with probability βF (E+1)

and γF (E+1), respectively. Considering only non overlapping
subsequences, shows that the probability that a sequence of
length n does not contain any such subsequence is bounded
above by qt = (1−βF (E+1)−γF (E+1))b n

F (E+1)c. This bound
pt ≤ qt implies that pt decreases exponentially with n.

E. Consistency of the Blockclique Protocol

In the context of blockchains, a protocol is said consistent
if it guarantees that all honest nodes eventually agree on the
same set of final blocks [11]. The finality parameter F in
the Blockclique architecture implies a risk of a finality fork
attack, which can be made arbitrarily small by increasing F
at the cost of longer transaction confirmation times. Here, we
formally establish this property by showing that if the sets
of final blocks seen by two honest nodes are compatible at
a time t, then they are still compatible at a time t + r with
high probability. The proof involves Lemma 1, as well as the
Blockclique consensus rules.

Theorem 1 (Consistency). Consider a Blockclique protocol
and a network such that β < γ, δ < t0

2 and E = 0. Let F t1



and F t2 denote the sets of final blocks observed at time t by
nodes n1 and n2 respectively. Given t > 0 and r > 0, if F t1
is compatible with F t2, then F t+r1 is compatible with F t+r2 ,
except with a probability that drops exponentially in F .

Proof. Consider two honest nodes n1 and n2. As argued
in Sec. IV-B, the only strategy for an attacker starting an
attack at time s to make the sets of final blocks of n1

and n2 incompatible, is, given a block bτh final at a time s
according to one of the two nodes, say n1, but not yet settled
according to n2, to create a block bτ

′

h′ incompatible with bτh,
and try to overtake the blockclique with this alternative clique.
By Lemma 1, the probability p of success of this attack is
exp(−Ω(F )).

If a finality fork attack is already happening at time t, then
its probability to succeed before time t + r is lower than p.
As the attacker may spawn other attacks one after the other
independently, the probability that one of a maximum of m =
b rTt0 c consecutive attacks starting between time t and t + r
succeeds before time t + r is lower than 1 − (1 − p)m. The
probability that the attack started before time t or any attack
started between time t and t+ r succeeds before time t+ r is
thus exp(−Ω(F )).

Given the Nakamoto consensus rule defined in Sec. III-D3,
if a finality fork attack started at time s with block bτh ∈
Fs1 and /∈ Fs2 and incompatible block bτ

′

h′ succeeds between
times t and t + r according to n2, then bτ

′

h′ ∈ F t+r2 . In this
case (of probability exp(−Ω(F ))), F t+r1 and F t+r2 are not
compatible. If all finality fork attacks started before time t+r
failed before time t + r, then given the stale block rule, the
block bτ

′

h′ and other blocks present in the attack clique and
not in the blockclique become stale also according to n2. In
that case, as blocks produced by honest nodes are compatible
with each other provided δ < t0

2 , F t+r1 is compatible with
F t+r2 . If a finality fork attack is still running at time t+ r as
observed by node n2, and previous attacks failed, then F t+r1

is compatible with F t+r2 .

F. Attacking Honest Newcomers
Attacking new honest nodes joining the network involves

creating and extending an alternative clique until its fitness
becomes higher than the current blockclique’s, while allowing
it to become stale from the point of view of all existing honest
nodes. Since newcomers are not aware of the finality status
of attack clique’s blocks, they consider the attack clique as
the best clique, which prevents them from synchronizing with
other honest actors on the honest clique and causes a network
fork.

After the start of the attack clique, and before a change in
resource snapshot, safety is ensured when the attack clique’s
fitness grows slower on average than the current blockclique’s.

Given a probability p of block and endorsement creation,
the expected number of endorsements per block is pE, and
therefore the expected fitness of a block is 1 + pE. As the
probability of block creation is p, the expected fitness increase
of a clique per block slot is p(1 + pE).

The probability of successful block and endorsement inclu-
sion is β in the attack clique, and γ in the current blockclique.
The expected fitness increase per block slot is therefore
β(1 + βE) in the attack clique and γ(1 + γE) in the honest
clique. As a result, the fitness of the attack clique grows on
average slower than the one of the honest clique if β < γ.

However, beyond the resource snapshot delay K, resources
are not guaranteed to be equal in the two cliques anymore.
Moreover, depending on the implementation of the Sybil-
resistant selection mechanism, a node may get deactivated due
to inactivity to avoid high miss rates. In the attack clique,
honest nodes get deactivated due to inactivity and the attackers
become the sole block producers, causing the fitness of the
attack clique to overcome the fitness of the current blockclique
and the attack to succeed in the long run.

To prevent this attack, the client software downloaded by
newcomers should include the hash of a recent final block of
the blockclique (called checkpoint), allowing them to discard
high-fitness attack cliques during bootstrap. The checkpoint
must be more recent than the change in resource snapshot to
ensure that no highest-fitness attack clique has started after the
checkpoint as long as β < γ.

Property 1. If a new honest node is provided with a check-
point more recent than a K-seconds resource snapshot delay,
and if β < γ, then it is safe against attacks with alternative
cliques branching off settled blocks.

For instance, with µ = 1%, the safety condition becomes
β ≤ 0.497.

G. Security Constraints on the Parameters

Our analysis shows that for F ≥ 64, E ≥ 8 and δ < t0
2 ,

the system is robust against architecture-based attacks as long
as the attacker resource proportion β is below 45%. This
particular limit assumes a miss rate of µ = 1% which is
the current one in Tezos. Furthermore, long term attacks are
prevented by providing a recent block hash checkpoint to new
nodes when they join the network, in addition to the client
software and an IP list of bootstrap nodes.

V. PERFORMANCE

As in blockchains, performance in Blockclique is con-
strained by protocol parameters and network properties. We
evaluate the performance of Blockclique by simulating a peer-
to-peer network of nodes transmitting and verifying blocks,
and independently applying the consensus rules when they
receive a block. We estimate the highest consensus bitrate
achievable at low stale rate by optimizing architecture param-
eters under various assumptions on network properties.

In the following case, network properties are chosen to
match the estimates in Bitcoin and Ethereum [7]: up to
N = 4096 nodes are randomly connected in a peer-to-peer
network, with a median bandwidth B = 32 Mb/s, and latency
L = 100 ms between two connected nodes. The number of
threads T , the time between blocks t0, and the block size
SB define the consensus bitrate CB = T.SB

t0
. Results show
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that parallelizing block creation in T = 32 threads allows to
safely reach a consensus bitrate CB = 12 Mb/s in a network
of N = 4096 nodes, leading to a transaction throughput above
10000 tx/s. Our implementation is open-source1.

A. Simulation Methods

1) Peer-to-peer Network: The peer-to-peer network is gen-
erated as a directed graph of N nodes with random con-
nections between peers. Each node has a particular upload
bandwidth b for sending blocks, randomly sampled at the
beginning of the simulation between 1

2B and 3
2B where B is

the average upload bandwidth of all nodes. Each node sends
blocks one by one sequentially at the maximum speed of
its upload bandwidth, and with a random latency depending
on the destination node. The latency between two nodes is
sampled at the beginning of the experiment between 0 ms and
2L where L is the average latency between two nodes of the
network. Given its upload bandwidth b, a node is connected
to a number b4b/Bc of random successors.

When receiving a block, nodes verify the block and its
transactions before forwarding it to their successors in the
network graph. Those verifications are simulated in the sense
that we only consider a theoretical time needed for the node
to verify the block and the transactions. The block verification
time is set to 50 ms, and the transaction verification time to
0.025 ms per transaction included in the block. Each time
a node receives a new block, its compatibility graph and
blockclique are updated given its locally observed blocks, so
that when creating a new block, it extends its local blockclique.

2) Sybil-Resistance: Nodes are uniformly selected to pro-
duce blocks in particular threads at particular times, modeling
a uniform resource distribution. We implement this process by
seeding a pseudo-random generator with the thread and slot
numbers of a block before sampling a node that will have a
right to produce a block in that slot of that thread. A node
produces a block in a thread as soon as the timestamp of the
slot is reached by the computer clock.

1gitlab.com/blockclique/blockclique

3) Blocks and Transactions: Blocks are assumed to be
full of transactions. The size Stx of a transaction is set
to Stx = 1040 bits (transaction with one input and one
output). The maximum number of transactions per block is
thus SB−SH

Stx
, where SB is the block size and SH the block

header size. We do not simulate endorsements for simulation
time reasons, however their impact on transaction throughput
is expected to be minimal as one endorsement is about the
same size as a transaction.

B. Results

1) Optimization of Blockclique Parameters: In this section,
we assume a network of N = 1024 nodes, with median
bandwidth B = 32 Mb/s, and median latency L = 100 ms
between nodes.

We evaluate different architecture parameters to assess
which consensus bitrate is viable in the range CB = 4 Mb/s
to 20 Mb/s, depending on the number of threads T , the inter-
block time t0 and a block size constrained by the other param-
eters: SB = CB .t0

T . In order to test the network under maximal
load, nodes are assumed to produce all blocks (µ = 0).

Figure 5(a) shows the average transaction throughput over
10 runs with different seeds. Whenever one of the 10 runs
shows a significant stale rate (more than the 2% of Bitcoin),
the corresponding point is not plotted. We only report the case
t0 = 32 s as other values (t0 = 16 and 64 s) yielded the same
results.

Our results show that the maximum consensus bitrate that
can be achieved with a low stale rate increases with the number
of threads up to T = 32 threads, achieving CB = 4, 12, 16 and
16 Mb/s for T = 8, 16, 32 and 64 threads. The corresponding
transaction throughput is for instance 15307 tx/s with T = 32
threads, t0 = 32 s, and a block size SB = 16 Mb (CB =
16 Mb/s).

In a separate experiment, we evaluate the transaction
throughput when nodes miss a proportion µ of the blocks.
For T = 32, t0 = 32 s, and CB = 12 Mb/s, the resulting
throughput is proportional to (1−µ): 11532, 10342, 9218 and
8070 tx/s for µ = 0, 0.1, 0.2, and 0.3.

https://gitlab.com/blockclique/blockclique


Figure 5(b) shows the measured transaction confirmation
time as a function of the number of threads T and the inter-
block interval t0, with a consensus bitrate CB = 12 Mb/s and
F = 64 blocks. The confirmation time is approximately the
block finality time F.t0

T plus the time t1/2 for a block to be
broadcast to most of the nodes. With T = 32 threads, the
confirmation time is 36 s, 72 s and 142 s for t0 = 16 s, 32 s and
64 s respectively. We measure network latencies t1/2 = 4 s, 7 s
and 13 s respectively (average time to broadcast a block to half
the network, when the block size is SB = 6, 12 and 24 Mb).

2) Influence of Network Properties: In the previous sec-
tion, we assumed a network with the following properties:
N = 1024, B = 32 Mb/s, and L = 100 ms, and studied
the architecture performances depending on its parameters.
Here, we provide additional results evaluating the influence of
network properties on the best achievable consensus bitrate.

When the number of nodes is increased to N = 4096,
keeping B = 32 Mb/s, L = 100 ms, T = 32 threads and
t0 = 32 s, the network reaches a viable consensus with a
stale rate below 1% up to CB = 12 Mb/s, yielding an av-
erage transaction throughput of 11, 500 tx/s. When the median
latency is varied from L = 50 to 150 ms, keeping N = 1024,
B = 32 Mb/s, T = 32 and t0 = 32 s, the network remains
stable with CB = 12 Mb/s. Further simulations at a very low
average bandwidth B = 4 Mb/s show that for N = 1024,
L = 100 ms, T = 32 threads and t0 = 32 s, the network
supports a consensus bitrate up to CB = 2 Mb/s, leading to a
transaction throughput of about 2, 000 tx/s.

Overall, our results show that the Blockclique architecture
efficiently uses the underlying network, yielding high consen-
sus bitrates relative to the bandwidth of nodes even in large
networks.

VI. DISCUSSION

The Blockclique architecture combines three main ideas
that together make scaling possible: the data structure is a
multithreaded block DAG where each block references one
previous block of each thread, transaction sharding separates
transactions into multiple threads based on their input address
so that blocks created independently in different threads have
compatible transactions by construction, and the consensus
rule extends Nakamoto consensus to leverage the parallel
creation of blocks.

Blockclique is a simple extension of Nakamoto blockchains,
where each node receives and verifies all blocks and transac-
tions of all threads. As transactions are distributed into threads
but all nodes process them, there is no need for cross-shard
communications other than cross-thread parent links in the
graph. Transaction sharding guarantees that no double-spend
can happen even when blocks are created in parallel.

Parallel threads with minimal inter-thread synchronization
requirements, and lack of multiple inclusions of the same
transactions result in efficient, smooth and predictable network
usage, bringing the consensus bitrate close to the capacity of
the network.

Blockclique is secure against attacks aiming at tampering
with transaction history, forking the network or denying ser-
vice within a broad range of parameters, assuming that the
proportion of resources owned by the attacker is below 45%.

Our network simulations show that a highly multithreaded
block graph efficiently uses available network bandwidth and
reaches a transaction throughput of more than 10, 000 tx/s
with a stable consensus in a large decentralized network of
thousands of nodes. Based on network parameter estimates
in Bitcoin and Ethereum, we assumed a median bandwidth of
32 Mb/s, but a different assumption would scale the maximum
possible transaction throughput accordingly. In principle, it is
possible to dynamically adjust some aspects of the network
such as the number of threads through a fork of the client
code or an upgrade through a governance mechanism such as
the amendment process in Tezos. However, our results show
that T = 32 threads are suitable for a wide range of realistic
bandwidth and latency values.

As Blockclique uses a ledger-based approach (instead of
UTXOs), it is possible to store extra data and programs for
each address, and design specific types of transactions that act
on them, in order to implement a smart contract system. The
sharding process however, requires that each smart contract
lives in a specific thread, or uses sharding logic by itself.
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